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The receptivity problem for Gortler vortices induced by wall roughness is
investigated. The roughness is modelled by small amplitude perturbations to the
curved wall over which the flow takes place. The amplitude of these perturbations is
taken to be sufficiently small for the induced Gortler vortices to be described by
linear theory. The roughness is assumed to vary in the spanwise direction on the
boundary-layer lengthscale, whilst in the flow direction the corresponding variation
is on the lengthscale over which the wall curvature varies. In fact the latter condition
can be relaxed to allow for a faster streamwise roughness variation so long as the
variation does not become as fast as that in the spanwise direction. The function that
describes the roughness is assumed to be such that its spanwise and streamwise
dependences can be separated ; this enables us to make progress by taking Fourier or
Laplace transforms where appropriate. The cases of isolated and distributed
roughness elements are investigated and the coupling coefficient which relates the
amplitude of the forcing and the induced vortex amplitude is found asymptotically
in the small wavelength limit. It is shown that this coefficient is exponentially small
in the latter limit so that it is unlikely that this mode can be stimulated directly by
wall roughness. The situation at O(1) wavelengths is quite different and this is
investigated numerically for different forcing functions. It is found that an isolated
roughness element induces a vortex field which grows within a wedge at a finite
distance downstream of the element. However, immediately downstream of the
obstacle the disturbed flow produced by the element decays in amplitude. The
receptivity problem at larger Gortler numbers appropriate to relatively large wall
curvature is discussed in detail. It is found that the fastest growing linear mode of
the Gortler instability equations has wavenumber proportional to the one-fifth
power of the Gortler number. The mode can be related to both inviscid disturbances
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and the disturbances appropriate to the right-hand branch of the neutral curve for
Gortler vortices. The coupling coefficient between this, the fastest growing vortex,
and the forcing function is found in closed form.

1. Introduction

Our concern is with the mechanism by which Gortler vortices in incompressible
boundary layers are stimulated by wall roughness elements. We shall consider the
cases of isolated and distributed roughness over the whole range of unstable Gortler
numbers. In a recent paper (Hall 1990) the Gortler receptivity problem for free-
stream disturbances was discussed ; the present paper completes the discussion of the
linear receptivity problem for Gortler vortices. However, some of the cases considered
in this paper can be generalized to take account of finite amplitude effects but those
situations will not be discussed here. Before discussing the receptivity problem in
more detail we shall remind the reader of the main results of linear stability theory
applied to boundary layers on curved walls. The paper mentioned above (Hall 1990)
is for the most part a review of the linear and nonlinear stages of Gortler vortices so
the reader is referred to that paper for a more detailed discussion of the various
stages of Gortler vortex growth.

The main feature of Gortler vortices that makes them behave in a quite different
manner than, for example, Tollmien—Schlichting waves or Rayleigh waves is that
they are almost always dominated by non-parallel effects. This means that, at O(1)
wavenumbers and Gortler numbers, the concept of a unique neutral curve is not
tenable; the position where a given vortex begins to grow is a function of its
upstream history. Mathematically this property manifests itself through the
parabolic nature of the disturbance equations for Gortler vortices. Thus Hall (1983)
showed that at order one values of the Gortler number and wavenumber a small
amplitude Gortler vortex is described by a parabolic system of equations, which in
general must be solved numerically for each vortex wavenumber. The neutral curve
corresponding to any fixed initial disturbance can be computed by marching the
disturbance equations downstream, but it is a function of the initial disturbance.

The only exception to the situation discussed above is that when the vortex has
a wavelength small compared with the boundary layer thickness. In this régime the
vortex ‘feels’ the local structure of the boundary layer and is therefore able to
develop in a quasi-parallel manner. Hall (1982a) showed that it is then possible to
define a unique right-hand branch of the neutral curve which, at zeroth order, has the
Gortler number proportional to the fourth power of the vortex wavenumber.

It had been assumed by authors previous to Hall (1982a) that Gortler vortices
could be described in a self-consistent manner by making the parallel flow
approximation and possibly appealing to, for example, the method of multiple scales
to give the approximation some justification (see, for example, Floryan & Saric
1979). However, it is now accepted that no such justification can be made and that,
if one is interested in the evolution of vortices with O(1) wavelength in a boundary
layer, the governing equations are indeed the parabolic equations solved by Hall
(1983), thus no reduction to a set of ordinary differential equations is possible.

In the nonlinear régime the non-parallel characteristics of Gortler vortices are
maintained and the disturbance equations must be solved numerically (Hall 1988).
However, in the small wavelength nonlinear régime much analytical progress can be
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made and it is possible to describe vortices so large that they have an O(1) effect on
the mean flow. Indeed in that régime it is found that the mean flow is actually driven
by the vortices over most of the flow and adjusts itself so as to make all small
wavelength vortices neutrally stable (see Hall & Lakin 1988). At even larger
amplitudes the strongly nonlinear states described by Hall & Lakin (1988) become
unstable to wavy vortex modes as discussed by Hall & Seddougui (1989).

The above description of Gortler vortex growth in the linear and nonlinear régimes
also applies to compressible flows if the Mach number is not too large (Hall & Malik
1989; Wadey 1990). In the hypersonic limit Hall & Fu (1989, 1990) showed that the
linear development of Gortler vortices becomes much simpler. In particular, for
either a Sutherland or Chapman law fluid, the first term in the expansion of the
neutral Gortler number in terms of Mach number and wavenumber is independent
of non-parallel effects. That property remains true at higher order for a Chapman law
fluid but, for a Sutherland law fluid, non-parallel effects dominate at second order.

The results discussed above are broadly in agreement with experimental
observations, certainly the non-parallel incompressible calculations are much more
in line with experimental observations than are the parallel flow calculations.
However, the non-parallel theory causes philosophical problems for the transition
prediction industry ; the reason why this should be the case is obvious. Thus in, for
example, the e” rule for transition prediction it is necessary to know the unique
growth rate for a vortex at a given downstream position, but the main result of the
non-parallel work is that no such quantity exists. In the absence of a unique growth
rate the method cannot be used so, in some cases, the outcome of the non-parallel
work has been ignored and parallel flow theory used to predict the required unique
growth rate. In fact an unstable Gortler vortex undergoes most of its linear growth
at high wavenumbers so the latter type of calculation is not totally flawed. The point
is, of course, that if the concept of a unique growth rate is tenable only at high
wavenumbers, and as the growth rate can be found in a simple asymptotic manner
there, the high wavenumber theory should be used to predict the growth rate there.

The motivation for much of the research in recent years on (ortler vortices has
come from the Laminar Flow Control programme at NASA Langley. In particular,
a type of wing cross-section developed there (see Harvey & Pride 1982) has
significant regions of curvature on its underside. These concave sections are required
to stabilize the attachment line and control flow separation but are possible causes
of transition via the Gortler vortex mechanism. A question of some importance in the
flow around this type of wing is to determine, given that curvature is required
because of other considerations, how the curvature should be distributed to minimize
the likelihood of transition induced by Gortler vortices. A matter of equal importance
is that of whether changes to the curvature distribution made to suppress Gortler
vortices will enhance the likelihood of transition being caused by other mechanisms.
Further motivation to study compressible Gortler vortices comes from the necessity
for engineers to understand the flow around turbine blades or the flow in engine
inlets. In fact the stability problem associated with the latter flow is made much
more difficult because of shock waves present in the flowfield, as yet no progress has
been made with the Gortler vortex problem in the presence of shocks though some
progress has been made with understanding the effect of shocks on travelling wave
instabilities (Cowley & Hall 1990).

In the practical situations where the Gortler mechanism is thought to be
important it remains an open question if free-stream disturbances or wall roughness

Phil. Trans. R. Soc. Lond. A (1991)
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will cause the initial vortex growth. Without doubt in both the wind-tunnel and
flight situations we can expect that streamwise vorticity impinging on the leading
edge or generated by imperfections on the wing surface will be present. The main aim
of the present paper is to determine the efficiency of surface imperfections in
generating vortices. This will be done over the whole range of Gértler numbers, this
means that we will have to discuss the spatial inviscid instability problem for Gortler
vortices, apparently this has not been done previously.

We shall see that the investigations of Hall (1982a) at high Gortler numbers
overlooked a wavenumber régime where the fastest growing spatial Gortler vortices
occurs. A significant property of these modes is that they are wall modes, actually
they are localized in an asymptotically thin layer at the wall. This distinguishes them
from the neutral form of the small wavelength modes of Hall (1982a), which are
trapped in a thin asymptotically small layer in the interior of the flow. The new
modes which we describe are viscous but they connect in a simple way to the inviscid
spatial modes in one limit, and with the neutral modes of Hall (1982a) in another
limit. Because these most unstable modes choose to locate themselves at the wall, it
turns out that they couple strongly with any forcing due to a surface imperfection.
Our calculations suggest that the stimulation of these modes will be the most likely
consequence of a quite general surface imperfection, therefore they are likely to be
the source of transition in curved flows at high Gortler numbers. However, in
addition to these modes, we shall discuss all other possible types of induced
longitudinal vortex scalings. Our discussion applies to walls with small amplitude
imperfections of somewhat arbitrary character but we concentrate mostly on the
case when the perturbation is localized in the spanwise direction. For such walls we
find that the vortices grow in a wedge shaped region downstream of the obstacle,
though in the immediate downstream vicinity of the obstacle the disturbance decays.

The procedure adopted in the rest of this paper is as follows: in §2 we formulate
the receptivity problem for Gortler vortices induced by surface imperfections. In §3
we consider the limiting form of this receptivity problem appropriate to the small
wavelength limit; in this limit we are able to derive an asymptotic form for the
coupling coefficient between the forcing and the induced vortex field. In §4 the O(1)
wavelength problem is investigated; here we allow the forcing to vary on a
lengthscale comparable with, and shorter than, the boundary layer scale in the flow
direction. In §5 we isolate the fastest growing mode of the Gortler stability
equations. In §6 the receptivity problem for this mode is discussed ; finally in §7 we
draw some conclusions.

2. Formulation of the forced Gortler vortex problem

We consider the flow of a viscous fluid over a wall of variable curvature. We
assume that L is a typical lengthscale over which the curvature changes. If U_ is a
typical flow velocity a great distance from the wall, and v is the kinematic viscosity,
we define a Reynolds number, Re, by

Re=U_L/v, (2.1)
and we suppose that with respect to cartesian axes x*, y*,z* the wall is defined by
y* = L{Re g(x*/L) 4+ A Re“3f(x* /L, Resz* L)}, (2.2)

where 4 is a small constant.

Phil. Trans. R. Soc. Lond. A (1991)
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We define variables (z,y,z2) by

(x,y,2) = (x*, Rezy*, Reiz*) /L, (2.3)
and a corresponding velocity vector by
(ut, vt wh) = (u*,Re%v*,Re%w*)/Uw. (2.4)
We restrict our attention to the limit Re > oo and write
pt = pla)+ A Re3p(x, y, 2) + 0(42), (2.5a)
(w*, v, wt) = (@, 7,0)+ A4, T, D) + 0(4?), (2.5b)

where p* is the pressure, scaled on pUZ, with p the fluid density. Moreover, @ and #
depend only on x and y, whilst 4, #, % depend on all three dimensionless coordinates.
We first take the limit 4 — 0 with Re held fixed and equate terms of order 4°, 4 in the
Navier—Stokes equations. In the resulting systems for (#, 7,0, p) and (@, 9, ®, p) we
take the further limit Re — co to obtain, at the zeroth order level of approximation
in Re,

w,+7, =0, 1 2.6
wu, +ou, = —f_’x"'ﬁyyﬁj .
and
iy + 5, +10, = 0,
Wi, + Vi, + Wi, + 51, = Ay, o)
Wy + U0, + 00, + 00, = — P, + 4,7, ’
U, + 0w, = —P,+4,.

Here the operator 4, is defined by
4, =05+0z,

and by writing down a Taylor series expansion for the no-slip condition about y = ¢
we obtain the conditions

w=v=0, y=g(x), (2.8a)
i =—fu, v=-—fo,, D=0, y=g). (2.8b)
Meanwhile for large values of ¥y we require that
U—>u,(x), y—> 00, (2.90)
(@,9,@) >0, y—>o0, (2.9b)

where u,(x) is the dimensionless free-stream velocity; in this paper we shall confine
our attention to Blasius flow so that w,=1. To bring out more clearly the
destabilizing effect of wall curvature we make the Prandtl transformation

Yy>y—g,
T>T+g'u,
>0+ g'd,

whilst all other variables remain unchanged. In this case (2.6)—(2.9) become

Phil. Trans. R. Soc. Lond. A (1991)
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and 4, +o,+1w,=0,
Wik, + Va4, + o, +au, = 4,4,
Wb, + 00, + a0, + 00, + Gx(x) Wil = —p,+ 4,9, @.11)
W, + 0, = —P,+ 4,1,

a=—fu, T=0, #=0, y=0,

@,0,W—~>0, y—>o0.

In (2.11) we have replaced 2 d®g/dx? by G'y(x) where G and y will be referred to as the
Gortler number and wall curvature respectively. Thus (2.10) must first be solved for
the basic state whilst (2.11) then determines the forced vortex flow. We further note
that the wall condition on » could be modified so as to determine, for example, the
effect of wall suction on the generation of vortices. Finally, in this section we assume
that f may be written as

f=f0)e

so that (2.11) can be Fourier transformed in z to give
U, +v,+ikw = 0, (2.124)
Wty + Dy, 010, + Wi, = Uy, — kPu, (2.12b)
W, + 0, + 00, +uv, + Gy = —p, +v,, —k*, (2.12¢)
ww, +vw, = —ikp+w,, —k*w, (2.124d)
u=qk)F(x), v=0, w=0, y=0, (2.12¢)
u,v,w—>0, y—>00. (2.12f)

Here £ is the transform variable, —¢ isNthe transform of ¢, u is the transform of 4, etc.,
and we have defined F(x) = #,(x,0)f(x). In the following sections we discuss the
solutions of (2.12) in a variety of situations; for convenience we note that if p and w

are eliminated from the disturbance equations we obtain
{Wyyy + k*+ 120, v+ 7, u,,, + {0, + k20, + k2 Gt u
+{u,, —u 0?0y + k*u}y v, + 2{u,, +u, 0/0y} u,
+ 0y gy — Wy — 0, + 2%} v, + {10, + K*0} v, = 0. (2.129)

Thus the problem for the forced vortex flow can be reduced to the solution of
(2.12b, g) subject to the boundary conditions (2.12¢, f). At finite values of G the
solution of this system can only be found by numerical integration. However it is first
instructive to consider the receptivity problem for vortices with a wavelength
appropriate to the right-hand branch of the neutral curve; the results we obtain are
invaluable in interpreting the calculations at O(1) wavelength which will be discussed
in §4. Moreover the main result of the calculation is to show that the amplitude of
a vortex trapped in a thin shear layer an order one distance from the boundary is an
exponentially small fraction of the forcing amplitude at the wall. Essentially this is
because the forcing decays away from the wall on a viscous lengthscale comparable
with the vortex wavelength. However, the details of this decay are relevant to
related receptivity problems where the mode of instability is concentrated away from
the wall so we shall in the next section discuss the small wavelength limit in some
detail. The related receptivity problems we alluded to above concern inviscid modes

Phil. Trans. R. Soc. Lond. A (1991)
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of instability of compressible boundary layers, in particular the dominant small
wavelength modes of hypersonic boundary layers (see, for example, Hall & Fu
1989, 1990; Cowley & Hall 1990).

3. The small wavelength limit

We now consider the asymptotic limit k» oo in which case the unforced problem
becomes unstable in a layer of thickness &~* located in a position which maximizes
the downstream growth of the vortex. From Hall (1982a, ) we know that small
wavelength vortices develop in a non-parallel manner in a k™! neighbourhood of the
neutral location. Thus, if the Gortler number G is written as

G = Grt, (3.1)

then suppose that, using the approach of Hall (1982a), we find that correct to zeroth
order in k7' the neutral location is given by x = z. We then write

X = k(z—7%). (3.2)

We will allow the wall forcing function F(z) to be slightly more general than that
assumed in §2; more precisely, we now allow F to vary on the X lengthscale so that

F(z) = F(X). (3.3)

We will now show how the wall roughness induces a longitudinal vortex structure
within a &' neighbourhood of ® = Z; notice that if we wish to recover the case with
F varying on x lengthscale we simply need to replace & (X) by a constant in the
following analysis.

It follows from (2.12) that viscous effects in the normal and spanwise directions are
comparable when 0/0y = O(k); this is achieved in the bulk of the flow using a WKB
type of expansion. However, as discussed by Hall (1982¢), this expansion fails near
the wall and where @, has a local maximum. We suppose that thls maximum occurs
at y = 7 so that the forced flow must have a region II of depth & centred on y = 7.
Above and below this region are two further regions, I and III, where the WKB
structure is appropriate. At the bottom of region III the WKB structure will be seen
to break down; in fact the six different WKB exponents collapse into just two
distinct values as y — 0. Thus an adjustment or transition layer is needed as y —0;
we shall see below that this is of depth &~ and we refer to this region as IV. Flnally,
where y = O(k™1), the viscous derivatives in the y direction again become important
so that a wall layer, V, of depth k7! is needed. The different regions are illustrated in
figure 1.

The wall layer solution

Here we define § by
£=lhy

and the wall conditions suggest that 4 and v are O(1) here. In fact it can be seen from
(2.12a) that if w is O(1) in V then » must be of order k; we are therefore led to the
expansion

u=uy§)+..., v="kv()+..., (3.4a, b)
and we expand the basic velocity component @ in this layer as
w=Agk ..., (3.5)

Phil. Trans. R. Soc. Lond. A (1991)
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1
u o) I
A
s WKB region
0(1)
—————— e — —— ——
w 0k~ i buffer region
v 0(k1) & Wall layer

T forcing 1

Figure 1. The different regions in the high wavenumber limit receptivity problem.

where A(¥) is the wall shear at x = Z. A similar expansion can be written down for 7,
but it is not needed here. If we substitute the above expansions into (2.12) we find
that the zeroth order approximation to that system yields

{d?/d&*—1}u, =0,
{d2/dgE — 1), = — ¥ALu,, (3.6)
Uy =F, vy=v,=0, £§=0,

where ¥ = y(Z) and ¢ has been set equal to 1. The solution of (3.6) which does not
grow exponentially with £ is then seen to be

- —£
uy = F (X)ek, v, = —xG/\ﬁ%{g3+3g2}. (3.7)

so that when §—> o0 (3.7) gives

. RON\T I

~F R
U (x)e ¥+ Y

(ykiy e Y 4 . (3.8)

Solution in IV
We can see from (3.8) that the next region, IV, is of depth &% so we put
1= lky (3.9)
and the appropriate expansions of w and v are then
w=Uyn)e ™+,
v=kiVy(g)e 4. ..,

and after substituting into (2.12) and eliminating Vy(y) from the resulting zeroth
order equations we find

d3U0/d773_%)?G~/\277U0 =0, (3 10)
Uy(0) =U; =0, U0) =F (x). '
The solution of this system is
U, =F ¥ (o) (3.11)

Phal. Trans. R. Soc. Lond. A (1991)
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where o = [LyGA%)i and ¥ satisfies
dBY/AE -V =0, PO)=1, ¥(0)=P(0)=0
For large values of { the three possible forms for ¥ have
P~ ol exp [Betimg)

respectively so that ¥ grows exponentially when {— co. In fact the asymptotic form
of ¥ for large ¢ is found to be

W~ (/8 exp (GE) +
where w is a constant given to three decimal places by w = 0.285.

It follows that for large values of 4 we can write u as

tF 3 2
y o P2F (X)exp[— ey + 3t [3xGA ]] N (3.12)
]cq[XG/\z]lzya

In fact the two other (complex) exponentially decaying solutions match onto
exponentially decaying WKB solutions in IIT which do not have a turning point
layer at y = 7. Thus it is sufficient for us to consider the matching of (3.12) with the
WKB solution which does indeed have a turning point layer at y = 7; it is, of course,
the part of the velocity field which drives the potentially unstable vortex velocity
field.

The WKB solution in 111

In this region we seek asymptotic solutions for « and » which take the form

(u,v) = exp [lc Jy O(y) dy] {(ug, K*vg) + ...} (3.13)
0

Here 0(y) is the WKB phase function and the relative scalings of » and v follow from
the requirement that {02402} U ~ Vi, in III; the latter balance is the crucial one
shown by Hall (1982a) to be necessary for small wavelength vortices. It is a routine
matter to substitute for (u,v) from (3.13) into (2.12) and solve for (u,,v,). In fact at
zeroth order u, and v, are not determined but the consistency of a pair of linear
equations for these functions yields the phase equation

(0*—1)* = — Gy,

where #(y) = u(x, y). So that w and v decay with y we must reject values of 6 with
positive real part. The three acceptable solutions are then found to be

0 = —[1—(Gyiw, i, 0 =—[1—(Gyai,) et >R, (3.14a, b)
where the branch of the square root in the right-hand half plane is to be taken. The
first of these roots vanishes where 1 = Gxuu and this necessitates the existence of
the turning point layer II. The complex roots lead to no such turnmg point layer so
that the part of the WKB solution appropriate to these roots is valid in 0 < y < c0.
In fact these solutions match directly onto the part of the solution in III appropriate
to the complex valued large ¢ solutions of (3.12). Thus we neglect this part of the
WKB solution since it does not interact in any way with the induced vortex
instability which we will calculate in II. We therefore write « in III as

u=exp[—kfy[1—{G)7m_a }]2dy]{u0 .3+ ED,

Phal. Trans. R. Soc. Lond. A (1991)
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60 J. P. Denier, P. Hall and S. O. Seddougui

where E.D. denotes the other WKB solutions not having a turning point layer at
y = ¥. At higher order the amplitude function (X, y) is found to satisfy

—[0*— 1] GX € (y) w, — 2G i, xoOu,— 2Gx0*, u, ,
+ 600y, u, + 30 (0% — 1)*(1 —50%) u, — 40xGua,, uy = 0. (3.15)
Here €(y) = [wa, X1, |-z

and 7 = o(z,y). Thus w, satisfies a partial differential equation with coefficients
dependent on both X and y. Non-parallel effects lead directly to the term
proportional to X in (3.15). Furthermore, to match with the solution in IV we require

2w
K [xGA*]

Uy ~ F (x), y—0. (3.16)

To simplify the solution of the equations for u, we write

2w(

Uy = WWI_EW [ exp{2(x, y)}, (3.17)
where
— 1 2 w
2—3J vdy+vX J 3(9[ . 6(9 ] +XJ (3.18)
with vy = X Hwiw, X1,/ 450, ez, ey (3.19)
and N(y) = (xwin,) (6% — 1) (xWik, ) |y + 40°0, Xy} (3.20)
We note at this stage that N(7) = 0 so that the integral
Y Ny)
L 60 1

converges when y = 7, even though 6(7) = 0. After writing w, in the form (3.17) we
find that U(x,y) satisfies

AU,y — (@/30)U,/0X =0, U, =e"*'F (X), y=0. (3.21)
This system is most easily solved by taking the Laplace transform of U,. However,
before taking this transform it is convenient to suppose that # (X) =0 for X < X *

and that w = v = 0 for X < X*. We now make the change of variable X=X-X*and
let U,(s, y) be the transform of U,. We then find that

7, = fls) exp[ f/ Sady] (3.22)

where fls) = f exp[—sX —y X+ X% F X+ X*)dX. (3.23)
0
We must now find the limiting form of the WKB solution when y—7; this will
provide us with the required matching condition which we need to find the forced
motion in II.
First, we note that when y— 7 the phase function 6 may be written as

O~ —My—y)+..., (3.24)
Phil. Trans. R. Soc. Lond. A (1991)
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where M2 = G[(—72),,,]* (3.25)
and a * denotes a function evaluated at x = 7,y = 7. It follows that in the limit y -y
A S 4 —7)2
£~_1|y_g|w—§exp{XI+yX2+kf 6dy+MM}, (3.26)
Uo ki 0 4
3, —u 2 4 = ) v
21(i )3 exp {% f Udy-&-fg%(f NT(;Z/) dy}

with A= L e E , (3.27)

MAXONTE

Y Ny)
d I=| —==dy.
an fo 80 dy

Here § denotes the finite part of an integral. Finally, we note that U, in the limit
y — 7 takes the form

U, ~ fis)ly—gl+ &2, (3.28)
h @ g d
where = L 30 Y. (3.29)

Solution in the transition layer

Here the solution is essentially that found by Hall (1982a, b) so that we only
summarize briefly how it is obtained from the disturbance equations. The layer is of
depth k7% so we define Y by

Y = kry — g
and then w and v expand as

At zeroth order we obtain the equations
U, +Vyat =0, Vy+xGa*U, =0,
which have a consistent solution if
xGuras = 1.

Thus at zeroth order the leading order disturbance velocity field remains unknown.
In fact, since 7 was chosen such that (#?),, vanishes at y = 7 we must proceed to the
O(k™') approximation level to the disturbance equations before U, and ¥, are found.
At that order we find that U, satisfies

*0,_2* 0,
0Y? 3 0X

+iX{xGum, ¥ U,—M>Y?U, = 0. (3.30)

In the absence of any forcing we would seek solutions of this evolution equation
which have U, — 0, |Y] -+ co. However, for the forced problem we replace the condition
at ¥ = — oo by one which enables us to match with the solution in III. With that in
mind we take out the X dependence of U, appropriate to (3.26) by writing

U, = UyX,Y)eX+rX*
Phil. Trans. R. Soc. Lond. A (1991)
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in which case %, satisfies
2
%;”20 %u*a% — MY, —2u*1%U, = 0.

We can then make the change of variable X = X — X * and take the Laplace transform
of this equation with respect to X. If we denote the Laplace transform of %, , by U,
we find that %, satisfies a parabolic cylinder equation. More precisely, if % is to
vanish when Y—> 00, we require that

Uy = BU2u*(s+1)/3M, M3Y), (3.31)
where Ula, x) is a parabolic cylinder function. At this stage if s is chosen such that
2u*[s+1]/3M = —n—1

then ”120( + o0) = 0. This choice of s corresponds to the linear eigensolutions found by
Hall (1982a, b). In order to match the forced solution with that in III we note that
when Y- —o0

7~ B~/ (2m)
O I(2u*[s+1]/3M +1)

1Y2|Y]—M(s+1)—§+

Thus matching with the coreflow is achieved by choosing B = B(s) such that
B/ (2m) ks 6+D=3 ) [ s+ 11/3M + 1)

3— 24 Y y /17 T/N 1 1 ~ 1
- dtigifep] [ vay+y [ vdy+f 3GU 5y raricaaaey
0

Having determined B we can write down the inverse transform for %, and the flow
in II is then completely known. However, the gamma function has a sequence of
poles at the origin and on the negative real axis so that, if f has no poles or branch
cuts %, will be found from the contribution of these poles. The least stable mode
corresponds to the pole at the origin so that for large X the solution will be dominated
by that mode. As a measure of the size of the disturbance in the layer III we can take
the centreline velocity. After some manipulation we see that the streamwise
disturbance at ¥ = 0 for large values of X is given by

42—za*—50f —I—3M /4 ki o i
X *+ X)2+IX *—3X /4a*
MO exp {y( )+ S

(] A 7
h = —
where C exp{kfoﬁdy+3f vdy+f 36[ 66du]dy}

It follows from the above discussion that the coupling coefficient which relates a
typical vortex velocity field with the forcing function is proportional to

17 ~ 1,1
It exp { —k f |t —{ Gy, )i dy} .
0

Thus, since this result is valid only in the limit £ > 1 we see that small wavelength
wall roughness is an extremely inefficient generator of Gortler vortices. The reason
why this should be so is evident from the above discussion; it is, of course, a direct

Phil. Trans. R. Soc. Lond. A (1991)
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consequence of the fact that the vorticity induced by the roughness must diffuse over
an O(1) distance to the layer where potentially unstable vortices of this wavelength
can ex1st We conclude that small wavelength vortices of wavenumber proportional
to G% are almost certalnly unlikely to be generated by wall roughness. Thus it would
be extremely surprising if small wavelength vortices could be induced experimentally
by wall roughness; however, the work of Hall (1990) shows that such vortices could
be induced by free stream disturbances. We further note that, whatever the initial
size of the vortex wavelength, the fact that it is observed experimentally that the
vortex wavelength is conserved as it develops in the x direction means that
ultimately the small wavelength limit becomes relevant. Now we shall relax the
constraint on the size of the forced vortex wavelength and see if a stronger coupling
between the induced form and the forcing is possible.

4. Vortices of O(1) wavelength

Here we will be primarily interested in the case when the wavelength of the forced
vortex is comparable with the boundary-layer thickness. We shall concern ourselves
with both ‘isolated’ and ‘distributed’ roughness elements. For convenience we shall
initially take ¢ =1 which corresponds to a delta function shaped hump in the
spanwise direction, later we choose ¢ to correspond to other shapes. Moreover, we
shall also discuss the situation when the wall forcing function varies on a fast
lengthscale, for an isolated roughness element this type of forcing provides unique
initial conditions for the partial differential equations describing the vortex. Later in
this section we shall return to the case when F(x) varies on an O(1) lengthscale, we
shall see that this situation is the most efficient in producing linearly growing Gortler
vortices of O(1) wavelength.

We shall first determine solutions of (2.12) appropriate to the case when F(x) varies
on a relatively fast, O(e), lengthscale. We suppose that the forcing begins at x = ¥ and
write

X =(x—2)/e

and then F(x) = F*X). (4.1)

In fact without any loss of generallty we can take T =3 so that the original

lengthscale L has then been fixed in terms of the distance from the leading edge to
the position where the forcing begins. Clearly we expect a different response of the
flow when 7 is before or after the unstable régime of a vortex with wavenumber £;
with Z now fixed we must, of course, investigate that possibility by varying the
Gortler number G.

To find the forced flow in a neighbourhood of & we first note that when y—0,

WO, ~ ) /e so that convective and vertical diffusion effects are comparable in a layer of
depth es, and the wall forcing implies that u w1ll be O(1) there. It follows that, if
is 1ndeed 0(€°) in this layer, then v will be O(e ¢7%) there. We deduce from (2.12¢, d) that
p and w must then be O(e7$), O(¢!) respectively. Thus if we put

E=y/d
then for £ = O(1) we seek a solution of (2.12) which takes the form
(w,0,w,p) = (uy(X, £), € 0y (X, £), € wy(X, £), € py (X, €) +
whilst (@, 7) = (SAE, e uk?) + (4.2a, b)
Phil. Trans. R. Soc. Lond. A (1991)
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64 J. P. Denier, P. Hall and S. O. Seddougui
where A = ,(3,0), » = 27,,(3,0). If we substitute the above expansion into (2.12¢) we
find that
= 4.
{2t gt = 3

where s is the Laplace transform variable and 7, is the transform of v,. If ,_is to be
finite at infinity then
dw,
dg
Here A and B are constants and A4s is the Airy function; however, the transformed
continuity equation evaluated at the wall yields

B = —sF(s). (4.5)

=4 f gAi(/\%s%g) dé+B. (4.4)
0

Here F is the transform of F'* and 7y, then vanishes at infinity if
A = —3sXB. (4.6)

Thus 7, can be written in the form

7= sk g3 [ ae f“’“gm(mdy)}. )

The transformed streamwise velocity component is then obtained from the x-
momentum equation. We find that for large &, %, and 7, have the asymptotic
forms al 1 1 73 1 11
g ~ —3Fs A SwE 4. = —3FssAsesy 4L,
_ 5 2y 1 (4.8a, b)
Ty ~ 3FsA S0+ .. .,
where v = f:o ¢ Ai(p) dg. Thus the flow in the wall layer induces a motion in the region
where y = O(1), the appropriate expansions there are

w=U,e+..., v=Ve“%+... (4.9a, b)

and U,, V;,, the transforms of U,, ¥, are found to be given by
U, = 3Fw /) s\ Swg*(y, k) + ..., Vy = 3FsiASg*(y,k)w+.... (4.10a, b)
Here ¢* satisfies the stationary Rayleigh equation problem
w(dl—k*) g*—u"q* =0, ¢*0)=1,q9%(0)=0. (4.11)

Thus U, and 7V, decay to zero exponentially as y-—> oo and satisfy the matching
conditions (4.8). In each layer the transforms can be inverted and the large X form
of this velocity field can be used as an initial condition for the full linearized
disturbance equations. Now we consider the special case F'* = §(X) where § is the
delta function. It is easy to show by inverting (4.7) and the corresponding form for
7, that this choice of F* leads to a similarity solution

ug ~ 1/ X6y (E/XE), vy ~ 1/XH,(£/X5).

In fact the above similarity solution is also the large X asymptotic form of a
disturbance velocity field induced by a forcing function ¥ *(X) of compact support.
We conclude that the similarity solution can be used as the initial condition for the
disturbance equations in the case when vortices are induced by an isolated roughness

Phil. Trans. R. Soc. Lond. A (1991)
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element. We note here a related similarity solution situation arises in linear triple
deck theory (Hunt 1971 ; Smith 1973), but here the absence of a streamwise pressure
gradient in the Gortler equation causes the velocity field not to be confined to the
wall layer. We will now show how the similarity solution can be derived directly from
the disturbance equations.

The similarity solution
The appropriate similarity variable implied by the above discussion is

&= y(A/), (4.12)
where i=x—"r, (4.13)

and for { = O(1) the appropriate expansions for the disturbance velocity components
u and v are expected to be

w=N/E)ug(O)+..., v=(1/F)v,)+....
The functions u, and v, are then found to satisfy
df wy+ 380w+ Euy = vy, div,+38dE v, +3EdEv, =0, (4.14a, b)
together with the boundary conditions
Uy =0y =dyv, =0, £=0.

After some manipulation it is possible to solve (4.14b) for div, in terms of
Whittaker functions. We can then show that there is a solution of (4.14b) which
satisfies v, = d,v, = 0, = 0 and at infinity is such that v, ~ 1+exponentially small
terms. Thus the solutions of (4.145) which behave like { and {™® when {— o0 do not
appear in the required solution for v,; indeed if they were present we could not match
the wall layer solutions valid in the region y = O(1).

Having solved for v, we can then solve (4.14a) for u,, however, at this stage we see
that the homogeneous form of this equation has the eigensolution u, = {exp (—$¢®)
so that the inhomogeneous equation can only be solved subject to v, =0,{=0if a
finite multiple of the algebraically decaying solution u, ~ {2 is retained. However, it
is not possible to match that solution with the coreflow so we must choose v, = 0 or
expand % and v in the form

w = (AS/&) ug(§) +u, (§)/ &+ = (1/#) )0o(§) +v (D) +.... (4.154a,b)

In this case u, satisfies the homogeneous form of (4.14a) but v, satisfies an
inhomogeneous form of (4.14b) with  replaced by 3. After some algebra we find that
u, and v, are given by
(19, vy) = (&, — LA /2A3) exp (—183). (4.16a, b)
The functions w,, v, are shown in figure 2.
The result given in (4.16) is of some importance because it means that, at leading

order in the expansions of » and v, the disturbed flow is confined to the wall layer.
However, this is not the case at higher order. In fact we can show that u, is given by

uy = (—k*/30){e7 i, () /i (0)}, (4.17a)
where 4, is the exponentially decaying solution of
+58%d, 4, + 58, = 0. (4.17b)
Phil. Trans. R. Soc. Lond. A (1991)
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Uy,

1.0F
0.8}
0.6
0.4}
0.2

ol - _

o 1 2 3 4 5 57 ¢

¢

Figure 2. The similarity functions u,({), v,({) given by (4.16) evaluated at & = 0.5.

The function v, is found to satisfy

207 k*
[d} +38d, +3C] di v, = a0 (1+&d Pu, + 3 [2d} vy +5Ld, vy +38,], (4.17¢)

which must be solved subject to v, =v; =0,{=0 and
v, ~ const. +exponentially small terms, ¢— co.

We found by integrating the above equation numerically that this constant is non-
zero so the y = O(1) region has a disturbance velocity field of the form

w~ (—&u'/u)q*(y. k), v~q*y. k), (4.18)

where ¢* satisfies (4.11) so that (u,v) >0 when y — co. In figure 3 we have shown the
function ¢*(y, k) for several values of the wavenumber k. We note that for the smaller
values of k the function ¢* has a maximum value away from the origin. At larger
values of &k the function ¢* ~ e and therefore decreases monotonically as
increases from zero. We can then combine (4.10), (4.15) to give a composite velocity
field at some small value of & which can be used as initial conditions for the full
Gortler disturbance equations. Before discussing our numerical results obtained for
such a calculation we note that the similarity solution obtained above is unique only
up to a multiplicative constant. That constant can be evaluated for a particular wall
forcing function by obtaining the large X form of the velocity field obtained by
inverting the transformed velocity field. The constant will be O(1) and is, of course,
a function of the particular function chosen. Moreover, this ‘coupling’ constant gives
a measure of the input disturbance velocity field for the marching problem. We see
below that at the position where the downstream velocity field induced by this

Phil. Trans. R. Soc. Lond. A (1991)
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qﬁ
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Figure 3. The solution of (4.11) for £ =0.2,0.3,...,1.1.

disturbance begins to grow it has decreased in magnitude several orders of magnitude
so that the boundary layer is extremely unreceptive to this type of forcing. For that
reason it seems unnecessary for us to give values for the O(1) coupling constant
relating the forcing function and the similarity solution.

The numerical work

Now we shall report on some results we have obtained by integrating the Gortler
vortex equations with the similarity solution discussed above used to provide an
initial vortex velocity field. This solution was used to begin the calculations with
x = 0.5+ Az for Az small. The results presented here were obtained with Az = 0.004,
1600 points in the y direction and a vertical step length equal to 0.02. The results
were of course verified by varying these quantities in particular cases. It is of interest
to note at this stage that the similarity solution (4.16) gives an initial vortex field
with the v and v velocity components of the same sign (since A’ is negative). It is well
known that Gortler vortices generally have these components of opposite sign when
they are unstable so we might anticipate that localized roughness will not be a
particularly efficient generator of this type of instability. The scheme used to march
the Gortler equations downstream is precisely that used by Hall (1983) so we give no
details of it here. As a measure of the disturbance energy we used E(z) defined by

E =f (u?+ 02 +w?) dy
0

and the local growth rate § = E'dE/dz. Following Hall (1983) the position of
neutral stability can be defined as the location where £ = 0. This position will to some
extent depend on the choice of the flow property used to define f. Our calculations

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 4. The neutral curves corresponding to an initial disturbance constructed from the
similarity solution. G = 20(a), 15(b), 10(c), 5(d), 2.5(e), 2(f).

for several values of k, ¢ showed that £ decreases by several orders of magnitude
before £ becomes positive. Effectively this means that the type of localized forcing
discussed so far in this section will generate Gortler vortices but the vortices
produced by the forcing are significantly reduced in size before they begin to grow.
However, in the absence of any other forcing, this type of mechanism will be that
responsible for the growth of vortices and so it is worth giving some more detailed
results. For several values of k with fixed values of (¢ we computed the position at
which the induced vortex structure begins to grow. The local wavenumber and
Gortler number were calculated at that point and used to generate a neutral curve
in the local wavenumber (k,), local Gortler number (@,) plane. These curves are
plotted in figure 4 for several values of (. It is important to realize at this stage that,
since the forcing was imposed at the same value of x in each case, the value of G used
is a measure of how close the forcing is to the unstable region. We see in figure 4 that
the critical Gortler number for a given value of @ initially decreases with G. However,
the lowest critical Gortler number occurs when @ is about 2 and then takes on a value
of about 12. We conclude then that localized wall-roughness in its most dangerous
form produces the growth of the vortex system when the local Gortler number is
about 12. Here it is of interest to note that the corresponding critical Gértler number
appropriate to free-stream disturbances is about 6 so that free-stream disturbances
are the most dangerous. Indeed the energy loss of a vortex induced by a free-stream
disturbance is only an O(1) fraction of its initial value so it would appear that the
localized wall roughness mechanism would be relevant only in an experimental
facility with remarkably small free-stream disturbances.

In figure 5a, b we show the downstream development of the velocity field induced
by a delta function disturbance imposed at x = 0.5 with k = 0.4, @ = 5. We notice
that the initial forms of the streamwise and normal disturbance velocity components
are different than their ultimate unstable forms because they are of the same sign.
This is possibly one of the reasons why localized wall roughness is not an efficient

Phil. Trans. R. Soc. Lond. A (1991)
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(b)
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Figure 5. (a), (b) The downstream development of the velocity field induced by the similarity
solution for the case k= 0.4,G = 5. The disturbance corresponds to a delta function forcing
function at x = 0.5 and is shown at x = 0.7,0.9, ..., 3.5.

generator of Gortler vortices. We further note that the velocity field at the larger
values of x is quite typical of the non-parallel velocity fields obtained by Hall (1983).
To quantify the inefficiency of localized wall roughness at generating Gortler vortices
let us consider figure 5b in more detail. Since almost all of the energy of a vortex is
in the streamwise velocity component we see in figure 5b that the energy of the
vortex decreases by a factor of about 0.01 before it begins to grow. Thus we see that
the amplitude of vortex when it begins to grow is about 0.1 of its initial value.

Now we shall discuss some solutions we have obtained for the forced vortex
problem when the forcing occurs on an O(1) streamwise lengthscale. The equations
(2.12b, g) were solved using the approach of Hall (1983) subject to the conditions
(2.12¢, f). Here we shall report on calculations for the case when F(x), the forcing
function, is given by

F =40(x—Yexp[—20(x—3)?%], x=>1. (4.19)

The disturbance equations for a given k were marched forward from x = 0 with zero
initial disturbance. For a given function ¢(k) we can invert the Fourier transform in
z to give the velocity field induced by a hump of height proportional to §(z), the
inverse of ¢(k). Before discussing our results we point out that further calculations for
wall shapes other than (4.19) were carried out and gave qualitatively similar results.

In figure 6a, b we show the development of the functions u and v corresponding to
the case (4.19) with k= 0.45,G =8. We note that at smaller values of x the
maximum of % occurs at the wall. We see that subsequently the maximum value of
u occurs at a position which moves away from the wall and that the smallest
maximum value occurs at about x = 3.5 and is approximately 0.26. This is to be
compared with a maximum value of 4.84 of F(x). Thus we now see that for a non-
localized wall forcing there is a strong coupling between the induced vortex field and
the forcing. Furthermore we point out that the ratio between the smallest maximum
of 4 and the maximum of ¥ is a function of k and (. Thus by ‘tuning’ k and G we
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Figure 6. (a) The development of u(x,y, k) corresponding to the forcing function (4.19) with k =
0.45, G = 8. (b) The development of v(x, y, k) corresponding to the forcing function (4.19) with k =
0.45, G = 8. The profiles shown correspond to x =0.9,1.3,...,7.3.

can in principle maximize the coupling coefficient between the vortex field and the
forcing. However, such a calculation was not carried out since it would require a great
deal of computer time. Moreover, the results of figure 5a, b are sufficient for us to say
that distributed forcing produces a strong coupling between the induced flow and the
forcing. Perhaps this significant result has been appreciated for some time by
experimentalists who have induced Gortler vortices by placing strips of tape on the
wall of the test section of the experiment.
Now let us consider some results we have obtained for a wall with

§(z) = Inze 167, (4.20)

To monitor the strength of the induced vortex activity we computed w*(k, x,y), the
maximum value of u, as a function of &k, x and y, and the wall shear stress as a
function of k. By inverting the transform in z numerically we were then able to obtain
contours of u,,, the inverse of u*, and the wall shear as functions of  and z. The
results obtained for the two functions were similar so we shall concentrate on results
for u,,. Figure 7a—-d shows results obtained for u,, for the obstacle defined by (4.20).
The results shown correspond to G = 4, 8, 12, 16. The size of ¢ is a measure of how
soon we expect vortices to grow; in the absence of a unique neutral curve for the
Gortler problem we cannot be more precise than this. In the horizontal direction x
varies from 0.7 to 9 whilst in the vertical direction z varies between —20,20. We
could have demonstrated the same effect shown in figure 7 by fixing & and varying
the position where the forcing was switched on. Figure 7 shows clearly that
immediately after the obstacle the disturbance velocity field decays initially and is
concentrated in a wake behind the obstacle. Further downstream the curvature of
the wall re-amplifies this disturbance field into Gortler vortices which spread out
within a wedge-shaped region. The position where this amplification takes place is a
function of G; as we would expect amplification of the vortices occurs closer to the
obstacle as G is increased.
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0 50 100 150 200
X

Figure 7. Contour plots of u,, in the xz plane for the obstacle defined by (4.20). The results
correspond to (a) G =4, (b) G =8, (¢) G =12 and (d) G = 16.

0 50 100 X 150 200

Figure 8. Contour plots of u,, in the zz plane for the obstacle defined by (4.21). The results
correspond to (a) G =4, (b) ¢ =8, (¢) ¢ =12 and (d) G = 16.

Further calculations were carried out for asymmetric obstacles and in figure 8a—d
we show results corresponding to figure 7 but with ¢ now given by

§ = smize e, (4.21)

We see that the induced vortex field now is asymmetric about z = 0 but otherwise the
vortex pattern is essentially the same as that computed for (4.20). Again we see a
wake immediately behind the obstacle where the disturbance initially decays before
being amplified into a Gortler vortex further downstream. The angle of the wedge
within which the vortex activity becomes established for both the symmetric and
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asymmetric obstacles is a function of the wall shape and the initial Gortler number.
Because of the scalings used in the streamwise and spanwise directions the angle is
typically of order Res. However, from figures 7 and 8 it is clear that the angle
increases with G. This is consistent with our physical intuition since we would expect
that at higher Gortler numbers the vortex activity would spread out from the
obstacle more rapidly. Other calculations which we carried out showed, not
surprisingly, that the wedge angle increases as the spanwise extent of the obstacle
grows. In an experiment the wall roughness would not be localized at one spanwise
location so we would expect to see several wedges of vortex activity generated by the
different roughness distributions merging into a uniform vortex field further
downstream. We note that the onset of vortices in such wedge shaped regions has
been observed experimentally by, for example, Mangalam ef al. (1991). We conclude
that a roughness element of lengthscale O(L), O(Re:L) in the streamwise and
spanwise directions respectively will produce an induced vortex field with an almost
negligible drop in amplitude. Moreover, the onset of vortex activity will occur in a
wedge-shaped region behind the obstacle.

In other experiments vortices have been generated by fixing strips of tape at
periodic spanwise locations, if the spanwise spacing is chosen carefully then the
induced vortex field observed in an experiment is found to have the same spanwise
periodicity. The formulation of the receptivity problem discussed in this section
could of course be used to describe that situation. However, it is clear that the
induced vortex field must have a spanwise wavelength which depends on the rate of
growth of the different modes. At finite Gortler numbers there is no such thing as a
fastest growing mode so the wavelength selection problem can only be tackled by the
type of numerical simulation discussed above. However, when the initial Gortler
number of the flow is increased we might expect that the induced vortex field might
have some unique structure associated with the right-hand branch of the neutral
curve. The discussion of the previous section suggests that the small wavelength
modes described by Hall (1982a) would have exponentially small amplitudes when
induced by wall roughness so it is an open question as to what the induced vortex
field would look like at large initial Gortler numbers. This question is also of some
practical importance since it is relevant to the generation of vortices on turbine
blades where the relatively large curvature of the blade means that the appropriate
Gortler number is large. To answer this question it is necessary for us to look more
carefully at the different vortex structures which are possible at high Gortler
numbers, this matter is now addressed in the following section.

5. The most unstable GoOrtler vortex

We recall that the only part of the wavenumber—Gortler-number plane that can be
described in a self-consistent manner by a parallel flow theory corresponds to large
values of the Gortler number and wavenumber. More precisely we note that, in the
limit G- o0 with & ~ G4, neutral vortices described by the asymptotic structure of
Hall (1982a) exist. Moreover, in the neighbourhood of the neutral state spatially
amplified modes with growth rates O(k*) occur. These modes develop in the
streamwise direction in such a way as to maximize their local growth rate. To isolate
the fastest growing mode at high Gortler number (note that this concept is not
tenable at finite Gortler numbers) we investigate the wavenumber spectrum close to
the right-hand branch of the neutral curve. The analysis is based almost entirely on
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that given by Hall (1982a), so we give only the most relevant results here; in fact the
analysis of §3 essentially outlines the neutral structure of such modes if the forcing
is switched off.

Consider then the solution of (2.12b, g) in the limit G~ co with k = O(G3). More

recisely we write L
precisely k= AGH, (5.1)

where A = O(1) initially but later it will be informative to move further away from
the rlght -hand branch by letting A - 0. We seek a solution of (2.12b, g) in a layer of
depth k73 ~ G~% centred on the location

y =y).
The appropriate expansion of the disturbance velocity u there is

U = exp [G%Jz plx) dx] {ug (Y, @)+ k3, (r, ) + .. ) (5.2)

together with a similar expansion for k~%v; here ¥ = Ai@3{y—7y} and we have
anticipated a growth rate of size O(G%). In the layer of vortex activity we write

@ = To(x) + AHay () Y G54 (5.3)
and, following Hall (1982a), we find that the zeroth order approximation to the
eigenrelation is B - o

{@y B+ A% = yuiy(x) @, (). (5.4)

At this stage 7(x) has not been fixed so we must interpret (5.4) as an equation to
determine § = (A, x, §(x)). If there is no forcing the vortex must decay exponentially
as || > o0, this provides a second condition

©/0y) [(w(x, y) B+ A%)* — yia(e, y) (@, y)]|y-5 = 0. (5.5)
The vertical structure of the vortex is then obtained in terms of parabolic cylinder
functions as was found in §3. We can then eliminate the dependence of £ on 7 by
combining (5.4) and (5.5) to give g = f(A,x). We note that the vortices are
responding in a quasi-parallel manner so we could in fact scale x out of the problem
by redefining A and S. In particular if @ corresponds to a Blasius boundary layer so
that @ = f'(y) = f (y/+/ (2x)), where f is the Blasius function then we must write /)’ =
(x/v/ (22))28', A = (x/v/ (2x) 4/\* in which case the simplified problem for g%(A") is

(fBT+X)2 =[ff", 2f "B (f AT+ AT) = (ff7), (5.6, b)
where the Blasius function is to be evaluated at some 4 = 5" where (5.66) holds. In
figure 9a, b we show S' and %' as functions of A'. The cut-off value of 5"~ 1.5
corresponds to the neutral state found by Hall (1982a). However, we see that 8 is
a monotonic decreasing function of AT and in fact has a singularity when AT 0,. An
analysis of (5.6a, b) shows that in that limit

Bt~ a2 (5.6¢)

so that small wavelength vortices become progressively more unstable as k/Gi > 0.
Thus we reach the conclusion that the quasi-parallel approach of Hall (1982a) does
not capture the fastest growing mode and that the most unstable modes are probably
to be found concentrated in a layer approaching the wall. Interestingly it is found
that the fastest growing temporal mode is captured by the asymptotic structure of
Hall (1982a); unfortunately the temporal modes are irrelevant to the receptivity
problem for free-stream or wall induced vortices.
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Figure 9. (a) The dependence of A" on At. (b) The dependence of ' on A",

The above discussion suggests that the most amplified wave for G > 1 is to be
found where k < G4. Suppose then that in order to find out the precise location of this
mode we investigate the region ¢ > 1,k = O(1). In fact here the vortices satisfy the
inviscid form of the vortex equations and have growth rates O(G%). We are unaware
of any previous work on the spatlal modes of the inviscid Gortler problem so we give
slightly more detail now than was given for the k ~ G problem. The temporal inviscid
Gortler problem is virtually identical to the inviscid Taylor problem and is set as an
exercise by Drazin & Reid (1979), and discussed by Floryan (1986). Now let us look
at the structure of the spatial inviscid Gortler modes and see if they include the
fastest growing mode. We first expand « in the form

u = exp [G% fﬂ dx} {ug(a, y) + G2y () + ..}
together with a similar expansion for G7#. The eigenvalue problem for the
amplification rate ﬁ’ is then found to be
— BPul (0 — k*) vy — (@,, /%) vy] = kPXT, vy, v, =0, y=0,00. (5.8)

Notice that since (5 8) corresponds to the inviscid limit we cannot satisfy the viscous
boundary condition vy, = 0. For a given value of z we can solve (5.8) for the unstable
eigenvalues, correspondmg to # > 0. In particular, we note that (5.8) has the exact

solution - -
vy = wexp (—ky), p*=3kx, (5.90)
Phil. Trans. R. Soc. Lond. A (1991)
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valid for all k. We note that for k < 1 there is a famlly of unstable modes with
B ~ kt; these modes are first s1gn1ﬁcantly altered by viscous effects when k ~ @7 and
become non-parallel when k& ~ G2

The above exact solution is Valid only if # does not wvanish in (0,00) and
corresponds to an unstable mode if y is positive so that the wall is concave. OQur
primary concern in this paper is with the receptivity problem for a Blasius boundary
layer but we shall now make a few remarks about the relevance of the above solution
to other flows.

First, we note that a second exact solution of the differential equation for v, is

v, = wexp (ky), [ =—3ky, (5.90)
but this solution does not satisfy the required boundary condition at infinity unless
# vanishes there. More precisely we require that @ goes to zero more quickly than
does e*¥. Thus the second exact solution is relevant to for example wall-jet flows and
corresponds to an unstable disturbance if y is negative so that the wall has convex
curvature. Hence a wall-jet flow is unstable in the presence of either convex or
concave curvature. However, the magnitude of the growth rate depends only on the
magnitude of the curvature, whilst the form of the eigenfunction depends only on the
sign of the curvature. We further note that the second exact solution is also valid
only for flows which do not have a change of sign in @ within the flowfield. As one
would anticipate the unstable modes for a flow having a change of sign of # are more
complicated ; in fact, they have a critical layer structure where # vanishes and
viscous effects must be retained to remove the singularity in the disturbance velocity
field. In that case the exact solutions describe the disturbance only in the region
above the critical layer furthest from the wall. We note here that the eigenvalue of
the unstable mode associated with such flows is still as given by (5.9a, b) dependent
on the sign of the curvature. A result which is even more surprising is that (5.9a, b)
apply to compressible boundary layers for which # does not change sign. Hence for
a compressible boundary layer the temperature profile and Mach number no direct
effect on the growth rate of what is in fact the most unstable inviscid mode. In fact
the exact solution is only the first mode in an infinite hierarchy of modes which yield
unstable eigenvalues if %, is anywhere positive. However, we were unable to
determine exact solutions of (5.8) for these higher modes. In figure 10 we present the
first two unstable eigenvalues of (5.8); we have restricted attention to the Blasius
flow and have, for convenience, chosen x = }. From (5.8) we expect that for small k
the higher modes have unstable eigenvalues # ~ k. This prediction is born out by the
results shown in figure 10 for the second mode.

We see from figure 10 that there is not a fastest growing mode predicted by our
calculations since for the two modes calculated § tends to infinity when k— co. In
fact it is crucial to find this large k structure since it provides the vital clue in the
search for the most unstable mode. The calculations we performed to construct figure
10 showed that the eigenfunction of any mode becomes concentrated at the wall as
k— oo. This suggests that a new structure will emerge from (5.8) when 0/0y ~ k in
which case there is a wall layer of depth £ near y= 0. Since @ ~ y for y small it is
clear that such a structure can exist only if # ~ k:. We therefore write

V="hy p=p%
and the reduced problem for £' is then

—BM™0%o /" — 0o} = 0o/, vy =0, ¥ =0,00.
Phil. Trans. R. Soc. Lond. A (1991)
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Figure 10. The dependence of the first two unstable eigenvalues £ of (5.8) on k.
Plotted is f* against k.

This is a form of Whittaker’s equation
W’ +[—1+K/z+ G—p?)/22] W = 0. (5.10)

The solutions of this equation using the notation of Abramowitz & Stegun (1965) are
My (2), Wy ,(2) and can be expressed in terms of Kummer functions. The above
equation reduces to (5.10) if # = +1 and 28'2/y = 1/K.

We can infer from the small and large z forms of M, W given by Abramowitz &
Stegun that if we are restricted to x4 = +3 then the only values of K which enable W
to vanish at z = 0,00 are K = 1,2,3.... Thus the unstable values of g' are given by

V2R =t X /V2 XV

Note here that the first eigenvalue is the exact solution valid for all k. Thus in the
high wavenumber limit the inviscid modes become progresswely more unstable with
growth rate ~ Gkt On the other hand we see that the viscous right-hand branch
modes become more unstable as k decreases, actually from (5.1), (5.2) and (5.6¢) we
see that in that régime the growth rate is ~ G3(k/G7) 2. This suggests that the viscous
and inviscid modes in these hmltlng cases will merge when & ~ G5 since they will both
then predict growth orders ~ GS. Moreover, both limiting forms then suggest that the
vortices will then be confined to a layer of thickness G% at the wall. Thus in this
‘overlap régime’ we write k=G W=y

and expand « in the form

u = exp [G fﬂ(x) dx} (g + G 5u, + ...}

together with a similar expansion for G3». Near the wall the basic flow @ ~ p(x)y and
the function pair (u,,v,) is found to satisfy

d*  pup¥ I
{dsv%“?"_l}““ X’
d? _,ué"]’_l d? ey _ xuPu, (65.11)
dyr » dy? L

Uy =0y =0, =0, ¥=0,00.
Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

/,//’ \\
/

A
i P 9

P
4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"/\\
A Y

A

i \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Gortler vortex receptivity 77
0.3
B
02
0.1
0 08 < 16
A

Figure 11. The dependence of the eigenvalue ﬂ~ of (5.14) on A.

The limiting inviscid form is then obtained from (5.11) by taking the further limit
A—01in (5.11), whilst the limiting form (5.6) is recovered by allowing A - oo in (5.11).
Thus without further calculation we know that the eigenvalues of (5.11) are such that

B~X, XA>0, B~X2 A0, (5.12)

so that at some intermediate value of A a most amplified case will exist. To confirm
this we solved (5.11) numerically to obtain the first few unstable eigenvalues as
functions of A. For computational purposes it is convenient to eliminate the
parameters u, y from (5.11) by writing

X= (w2, B=(CurB uy=pdy, v, = (x5, (5.13a-d)

in which case (5.11) may be rewritten as

R CIE 7 RE .
i fo- a1
LI 2P DU A (5.14)
ap = R
Gy =D, =5 =0, ¥=0,00.

Thus (5.14) now constitutes an eigenvalue problem ,5 = ,é(/i) and the first two
unstable eigenvalues are shown in figure 11; we see that (5.12) is confirmed and that
each unstable mode has its growth rate max1mlzed at a finite value of A. Our
calculations showed that the most unstable mode corresponds to A = A, = 0.476, § =
0.312. Actually, in addition to the modes shown there is an infinite sequence of less
unstable modes with a similar f— A structure moved progressively closer to the A
axis.

Thus the above calculation has shown that the most unstable linear Gértler vortex
at high Gortler numbers is viscous but with wavenumber ~ G% rather than ~ Gt as
would be appropriate to the unstable modes close to the neutral curve. A further
significant result is that the most unstable vortices are close to the wall; this leads
us to expect that, when the appropriate receptivity problem for these modes is
discussed, O(1) ‘coupling coefficients’ are possible. This problem is addressed in the
next section; to close this section we make a few remarks about the nature of the
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1
0 6 w 2

Figure 12. The velocity fields 4, ¢, corresponding to the greatest eigenvalue of (5.14).

eigenfunctions associated with the most dangerous mode we have isolated. The 1,
¥, velocity fields of the most dangerous mode are shown in figure 12. We see that they
have the characteristic shape of vortices measured experimentally. In fact figure 13
shows a comparison of this most unstable eigenfunction with that measured by
Swearingen & Blackwelder (1987). Also shown is the eigenfunction from Smith’s
(1955) parallel flow theory. We see that the predicted velocity field is close to that
measured experimentally.

Now let us consider the evolution of a fixed wavelength vortex as it develops in the
x direction. We note that it is observed experimentally that Gortler vortices develop
such that their wavelength is conserved so A = constant describes the experimental
situation. For definiteness we suppose that the basic flow is a Blasius boundary layer

th t} 1 1
so vha 1= et = 0469624/ 1/2
and further that the wall shape is such that
¥~V with N fixed.

We can determine S(A) for such a situation by noting that
B = (@ H)p,

with F=pia=X (xﬂ N)

Experimentally it is observed that when a vortex develops downstream 1t conserves
its wavelength. Thus for a given fixed value of N we compute A= X(x(1—N)/5) it
at the location « and read off the corresponding value of § from figure 11 I‘he growth
rate f§ at that location is then computed from g = (fa®¥-%)34. It follows that the
maximum possible growth rate at any x will increase with x only if N > . However
we note that, in the special case N = 1, A is a constant so that the most unstable mode
occurs at the same value of A for all # and has magnitude increasing like a*. This
particular choice of N =1 is significant for the asymptotic structure we have
developed because in this case the local Gortler number varies like the fifth power of
the local wavenumber so that only the magnitude of the maximum growth rate can
depend on . We note in passing that N = { plays a similar role for neutral vortices
corresponding to the right-hand branch of the neutral curve.
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= QO Figure 13. A comparison between the experimentally measured eigenfunction of Swearingen &
T O Blackwelder (1987) and the corresponding eigenfunction calculated from the solution of (5.14).
o A, Experimental observation; , present calculation; ———, Smith (1954).
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29
A @) In fact if we do not take N = 1 we see that A either decreases or increases with
= depending on whether N > 1 or N < 1. This means that for a given value of A the

growth rate f(x) will have a maximum value at some value of x if N # 1. Thus if
N # 1 there is a downstream location where a vortex of given wavelength is most
amplified. In figure 14a—c we show f as a function of A and « for the cases N = 0,3,
1. It should be noted that the development of a given vortex can be found from these
figures by taking a slice through that figure parallel to the f—x plane.
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6. The receptivity problem for the most unstable Gortler mode

We have seen above that the crucial property of the most unstable vortex is that
it is confined to a region of depth G near the wall. Suppose then that the wall forcing
function F(x) is of the form

F=0 xz<r=x,

F=FJ@x—z), x> z| (6.1)

Here we have introduced the factor J = (y3u)° for convenience. Thus we are now
allowing the wall forcing function to vary on a lengthscale comparable to the
lengthscale over which the most unstable streamwise vortex develops. If we then
define & by .

&= J5(x—7)

and write
w = uy (%, V) + G u, (7, ‘1’)+...,1 62)
(xp2Q) Suw = vy(&, ¥)+ G50, (&, P)+. .., J '
then it follows directly from (5.14) that u,, v, satisfy
o 1.0 1
T
(6.3a, b)

¢ 1,20 0? 1
V1= —= Pu,.
{asw X od 1}{@@ 1} oo
Here A, ¥ are as defined in the previous section. The forced problem then satisfies the
conditions
u, = F(#), v,=0, ¥=0,
4da,b

Uy, Uy >0, ¥ o00. (644, 0)

In fact, we could modify the boundary condition as ¥ — co in order to allow for the
possibility that vortices are induced by free-stream disturbances. However, since the
disturbance in the free-stream must communicate with the wall layer over an O(1)
distance on a G+ lengthscale through a WKB structure 81mllar to that of §3 the
coupling coefficient for such a disturbance would be O(e” 1/5) and so this type of
excitation will be weak compared to that discussed here. Alternatively we could
investigate the effect of wall suction by setting u, = 0 at the wall and applying a non-
zero boundary condition on v, there. The forced problem (6.3), (6.4) is most easily
solved by again taking a Laplace transform with respect to the streamwise co-
ordinate. If we denote the transforms of u,,v,, and F by #,, 7, and F', and assume that
there is no incoming vortex field then we find that i, v, satisfy (5.14) with § replaced
by the transform variable s and the boundary conditions unchanged except for
replacing the condition %, = 0, ¥ = 0 by 4, = F(s), ¥ = 0. We can write the solution
of this problem in the form

(@y, Ty) = F(s) (u*(s, P), v¥(s, ¥)), (6.5)

where (u*, v*) satisfies the same problem as (%, vo) but with F = 1. It is obvious at
this stage that «* and v* will have singularities in the complex plane where s = ﬂ],
the jth eigenvalue of (5.14) for j = 1,2 ... . Moreover when we invert the transformed
velocity field these singularities will in effect fix the form of the induced vortex field.
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It is therefore essential that we should find the form of these singularities. We can
obtain the form of (u*, v*) near the singularity by expanding (u*,v*) in the form

(u*, v*) = (uf, vF /s—ﬂy (uf, oH)+.... (6.6)

If the above expansions are substituted into the differential system for (u*, v*) and
s is replaced by

s=B+(s—F) (6.7)
and terms of order (s—p;j)‘1 are equated in that system we obtain
(g, vF) = Ao (B )00 (B, V), (6.8)

where 4; is a constant and (o, 7;0]) is the eigenfunction of (5.14) appropriate to
ﬂ /)’ At next order in the expansion procedure we find an 1nhom0gcncous form of
(5.14) to determine (uf,v¥). If we define (b;,f;) to be the function pair adjoint to
(o), vy,) then (b, f;) satisfies

aw = T
dz e B b (6.9)
(i (=1 )=
b=f,=f;=0, ¥=0,00
and the solvability condition for the system for (uf,v¥) yields

4, = Fb)(0) / J “ £, (@A — 1) v, /X0 + P, JA3b} Y. (6.10)

For convenience we assume at this stage that «, has been normalized to have a
maximum value of unity so that 4; is a measure of the transformed disturbance
amplitude. It remains now for us to invert the transformed velocity field ; in order to
do so we must be more precise about the function F. If we are interested in the effect
of an isolated roughness element we can take I to be a function of compact support
and then F' cannot have any singularities in s, = 0. If we wish to consider the effect
of distributed roughness this restriction must be relaxed and we merely assume that
F exists. In the first instance we assume that I’ has compact support then, since the
only singularities of (5.10) in s, > 0 correspond to the simplc poles discussed above
the contour of integration for the inverse transform is chosen parallel to the
imaginary axis to the right of s = ﬂl The contour is then closed in the left-hand half
plane Re (s) < A, and the only contributions to this integral come from the poles
§= ﬂ}. Thus we obtain

TMS

(ug, v) = (uo » Vo, )e g A F ﬂj (6.11)
so that for a given value of A the effective coupling coefficient is A].F'(/);j) for the
amplitude of the mode.

However, it is clear that for large x (6.11) will be dominated by the fastest growing
mode which of course corresponds to j = 1. Thus when the Fourier transform is
inverted to give the effect of a particular Z structure for the wall forung by
deforming the contour appropriately we will see that far downstream a vortex is set
up with growth rate A, and with the wavelength A corresponding to B,. At this stage
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Figure 15. The ‘amplitude’ 4, as a function of A

we could repeat the discussion of §4 and determine the effect of a three-dimensional
obstacle on the onset of Gortler vortices. In fact the development of vortices in this
region is essentially identical to that of §4. Thus behind a three-dimensional obstacle
there will be a wake where initially the effect of the obstacle is concentrated ; further
downstream this wake will expand into a wedge-shaped region of vortex activity
with a vortex wavelength corresponding to the most unstable mode of (5.10). The
above discussion has assumed that F has compact support; if that is not the case then
some further discussion is required. In fact if does not have a pole to the right of
s = f3, then the large @ downstream behaviour of the vortex flow will be as described
above, since the associated velocity field will still be dominated by the pole at s =
A,. However, if F' has a pole to the right of s = 3, at, say, s = s* then F increases like

e*"? for large x and our original assumption that the wall perturbation is small
becomes invalid. Thus the only situations described by our theory have the inverted
velocity field dominated by the fastest growing mode of (5.10). Hence the question
of whether the roughness element is isolated or distributed is not resolved for the
fastest growing mode in either case. In either case F(f4,) will be an O(1) number so
that each type of forcing leads to an O(1) coupling coefficient between the surface
perturbation and the induced vortex field. In figure 15 we present a plot of 4, against
A; we can see from this plot that A4, attains its maximum at a finite Valuc of A.
However, there is no reason to assoclatc this value of A at which the maximum of 4,
occurs with that found in §5 for the most unstable vortex.

Finally in this situation we make a few remarks about more similarities between
the solutions of (6.3) and those obtained in §4. First, we note that (6.3) has a small
& similarity solutlon essentially identical to that found in §4. Again the similarity

variable is ¢ = ¥/d and for ¥ = O(d) it is easy to show that the solution expands
as
g = (1/&) Tg(O)+...; vy = (1/F)5()+...,

with (u,,v,) glVbn from a rescaled form of (4. 3) Above this layer where ¥ = 0(1),
there is a region with u, ~ (1/#)%@,(y), v, ~ (1/2%) 7,(y) again, in fact it turns out that
U, ~ € % there so that, if the z structure of thc wall pcrturbatlon is concentrated near
z = 0 and modelled by a delta function, above the # layer the normal perturbation

velocity in x,y, z space is proportional to & 52/ (y*+22). Note that in the wall layer the
spanwise structure of the disturbance remains concentrated in a delta function form.
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However, the similarity form ~z/(y®+22) shows clearly the ‘wake’-structure
induced by a localized disturbance. This is precisely the situation observed in the
numerical investigations of §4.

7. Conclusions

We shall, in the first place, draw some conclusions about the stimulation of Gortler
vortices by wall roughness with spanwise wavelength comparable with the boundary-
layer thickness. The key point in this situation is that Gortler vortices develop in a
non-parallel manner; there is no such thing as a unique growth rate for a growing
vortex or a unique neutral curve for a vortex which is not growing or decaying.
Necessarily, this means that the receptivity problem for vortices of O(1) wavelength
must be dominated by non-parallel effects. In §4 we discussed the O(1) wavelength
receptivity problem for roughness elements varying in the streamwise direction on a
lengthscale comparable with, and shorter than, the body scale. However, in the latter
case our analysis fails if the roughness varies in the streamwise direction on the
boundary layer lengthscale. We saw in §4 that, for a forcing function of the form (4.1)
with F being a function with compact support, the effect of the forcing is to generate
a similarity solution of the linear Gortler vortex equations in the neighbourhood of
where the forcing occurs. By integrating the disturbance equations with the
similarity solution used to generate the initial vortex field we were able to determine
‘the’ neutral curve appropriate to an isolated roughness element inserted into the
boundary layer. Furthermore, we found that this type of forcing is a relatively
inefficient generator of Gortler vortices because the vortex amplitude at the position
where it begins to grow is an order of magnitude smaller than the amplitude of the
forcing.

Where the forcing varies on the body lengthscale, the coupling coefficient is O(1).
In this case we found that behind a roughness element localized in the spanwise
direction the disturbance initially decayed. Further downstream the disturbance was
found to be ‘reamplified’ by centrifugal effects and a wedge of vortex activity
generated. This pattern of vortex activity has been observed experimentally by, for
example, Mangalam et al. (1991).

In §§3, 5 and 6 we concentrated on the case where the Gortler number is large and
the vortex wavelength is small. The investigation of §4 showed conclusively that
small wavelength vortices associated with the right-hand branch of the neutral curve
suffer an exponential drop in amplitude because the region where they are unstable
is an O(1) distance from the region where the forcing occurs. Almost certainly this
means that it is unlikely that small wavelength Gortler vortices could be produced
by wall roughness in an experiment.

However, there is a situation when small wavelength Gortler vortices will be
preferentially induced by wall roughness. We refer to the region dlscussed in §§5 and
6, where the vortex wavelength associated with the forcing is 0(05) It is interesting
to note that the fastest growing Gortler vortex described in §6 had not been
identified by previous authors because it had been assumed that such a mode would
have to be associated with disturbances close to the right-hand branch of the neutral
curve. In fact, the fastest growing mode occurs in an overlap region between inviscid
modes of wavenumber O(1) and right-hand branch modes with wavenumber O(G4).
The eigenvalue problem (5.11), which determines the growth rate of the fastest
growing mode, is, in fact, clearly related to the Taylor vortex problem for the flow
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between concentric cylinders with the outer cylinder at rest and the inner cylinder
rotating. In that case f# corresponds to the azimuthal amplification rate of a steady,
small wavelength Taylor vortex trapped near the outer cylinder. However, (5.11) has
no neutral modes so that, for the Taylor problem, where the disturbance must be
single valued in the azimuthal direction, this type of disturbance is not physically
relevant. However, in other situations where no such constraint is appropriate (5.11)
determines the fastest growing spatial mode of instability. Thus the eigenvalue
problem (5.11) is directly relevant to the Taylor—Dean instability in pressure
gradient driven flows in curved geometries, whilst a generalization of (5.11) involving
a further second-order equation is relevant to the compressible Gortler problem with
and without curvature. We see from (5.11) that the only dependence of the
amplification rate on the mean state is through the wall shear x, and in fact g ~ us.
Thus the stabilizing effects of, for example, wall suction can be inferred directly from
their effect on the wall shear.

Finally, we turn to the results we obtained in §6 for the receptivity problem
associated with the fastest growing mode. Our main result in that section was that
4., the coupling coefficient of the fastest mode, is an O(1) quantity. This means that
wall roughness at high Gértler numbers will stimulate vortices of wavenumber G
close to the position where the roughness begins. If the roughness is localized in the
spanwise direction the vortex activity again begins in a wedge behind the obstacle.
It remains an open question whether finite amplitude effects will significantly
influence the structures we have discussed in this paper.

The authors acknowledge the support of SERC, ICASE and AFOSR for the research presented
above. The authors also thank Helen Morris for pointing out a mistake in the original version of
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igure 7. Contour plots of u,, in the a2z plane for the obstacle defined by (4.20). The results
correspond to (a) G =4, (b) G =8, (¢) G =12 and (d) G = 16.
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igure 8. Contour plots of u,, in the a2z plane for the obstacle defined by (4.21). The results
correspond to (a) G =4, (b) G =8, (¢) ¢ =12 and (d) G = 16.
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